Source code for stl.base

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
import enum
import math
import numpy
import logging
try:  # pragma: no cover
    from collections import abc
except ImportError:  # pragma: no cover
    import collections as abc

from python_utils import logger

from .utils import s

#: When removing empty areas, remove areas that are smaller than this
AREA_SIZE_THRESHOLD = 0
#: Vectors in a point
VECTORS = 3
#: Dimensions used in a vector
DIMENSIONS = 3


[docs]class Dimension(enum.IntEnum): #: X index (for example, `mesh.v0[0][X]`) X = 0 #: Y index (for example, `mesh.v0[0][Y]`) Y = 1 #: Z index (for example, `mesh.v0[0][Z]`) Z = 2
# For backwards compatibility, leave the original references X = Dimension.X Y = Dimension.Y Z = Dimension.Z
[docs]class RemoveDuplicates(enum.Enum): ''' Choose whether to remove no duplicates, leave only a single of the duplicates or remove all duplicates (leaving holes). ''' NONE = 0 SINGLE = 1 ALL = 2
[docs] @classmethod def map(cls, value): if value is True: value = cls.SINGLE elif value and value in cls: pass else: value = cls.NONE return value
[docs]def logged(class_): # For some reason the Logged baseclass is not properly initiated on Linux # systems while this works on OS X. Please let me know if you can tell me # what silly mistake I made here logger_name = logger.Logged._Logged__get_name( __name__, class_.__name__, ) class_.logger = logging.getLogger(logger_name) for key in dir(logger.Logged): if not key.startswith('__'): setattr(class_, key, getattr(class_, key)) return class_
[docs]@logged class BaseMesh(logger.Logged, abc.Mapping): ''' Mesh object with easy access to the vectors through v0, v1 and v2. The normals, areas, min, max and units are calculated automatically. :param numpy.array data: The data for this mesh :param bool calculate_normals: Whether to calculate the normals :param bool remove_empty_areas: Whether to remove triangles with 0 area (due to rounding errors for example) :ivar str name: Name of the solid, only exists in ASCII files :ivar numpy.array data: Data as :func:`BaseMesh.dtype` :ivar numpy.array points: All points (Nx9) :ivar numpy.array normals: Normals for this mesh, calculated automatically by default (Nx3) :ivar numpy.array vectors: Vectors in the mesh (Nx3x3) :ivar numpy.array attr: Attributes per vector (used by binary STL) :ivar numpy.array x: Points on the X axis by vertex (Nx3) :ivar numpy.array y: Points on the Y axis by vertex (Nx3) :ivar numpy.array z: Points on the Z axis by vertex (Nx3) :ivar numpy.array v0: Points in vector 0 (Nx3) :ivar numpy.array v1: Points in vector 1 (Nx3) :ivar numpy.array v2: Points in vector 2 (Nx3) >>> data = numpy.zeros(10, dtype=BaseMesh.dtype) >>> mesh = BaseMesh(data, remove_empty_areas=False) >>> # Increment vector 0 item 0 >>> mesh.v0[0] += 1 >>> mesh.v1[0] += 2 >>> # Check item 0 (contains v0, v1 and v2) >>> assert numpy.array_equal( ... mesh[0], ... numpy.array([1., 1., 1., 2., 2., 2., 0., 0., 0.])) >>> assert numpy.array_equal( ... mesh.vectors[0], ... numpy.array([[1., 1., 1.], ... [2., 2., 2.], ... [0., 0., 0.]])) >>> assert numpy.array_equal( ... mesh.v0[0], ... numpy.array([1., 1., 1.])) >>> assert numpy.array_equal( ... mesh.points[0], ... numpy.array([1., 1., 1., 2., 2., 2., 0., 0., 0.])) >>> assert numpy.array_equal( ... mesh.data[0], ... numpy.array(( ... [0., 0., 0.], ... [[1., 1., 1.], [2., 2., 2.], [0., 0., 0.]], ... [0]), ... dtype=BaseMesh.dtype)) >>> assert numpy.array_equal(mesh.x[0], numpy.array([1., 2., 0.])) >>> mesh[0] = 3 >>> assert numpy.array_equal( ... mesh[0], ... numpy.array([3., 3., 3., 3., 3., 3., 3., 3., 3.])) >>> len(mesh) == len(list(mesh)) True >>> (mesh.min_ < mesh.max_).all() True >>> mesh.update_normals() >>> mesh.units.sum() 0.0 >>> mesh.v0[:] = mesh.v1[:] = mesh.v2[:] = 0 >>> mesh.points.sum() 0.0 >>> mesh.v0 = mesh.v1 = mesh.v2 = 0 >>> mesh.x = mesh.y = mesh.z = 0 >>> mesh.attr = 1 >>> (mesh.attr == 1).all() True >>> mesh.normals = 2 >>> (mesh.normals == 2).all() True >>> mesh.vectors = 3 >>> (mesh.vectors == 3).all() True >>> mesh.points = 4 >>> (mesh.points == 4).all() True ''' #: - normals: :func:`numpy.float32`, `(3, )` #: - vectors: :func:`numpy.float32`, `(3, 3)` #: - attr: :func:`numpy.uint16`, `(1, )` dtype = numpy.dtype([ (s('normals'), numpy.float32, (3, )), (s('vectors'), numpy.float32, (3, 3)), (s('attr'), numpy.uint16, (1, )), ]) dtype = dtype.newbyteorder('<') # Even on big endian arches, use little e. def __init__(self, data, calculate_normals=True, remove_empty_areas=False, remove_duplicate_polygons=RemoveDuplicates.NONE, name='', speedups=True, **kwargs): super(BaseMesh, self).__init__(**kwargs) self.speedups = speedups if remove_empty_areas: data = self.remove_empty_areas(data) if RemoveDuplicates.map(remove_duplicate_polygons).value: data = self.remove_duplicate_polygons(data, remove_duplicate_polygons) self.name = name self.data = data if calculate_normals: self.update_normals() @property def attr(self): return self.data['attr'] @attr.setter def attr(self, value): self.data['attr'] = value @property def normals(self): return self.data['normals'] @normals.setter def normals(self, value): self.data['normals'] = value @property def vectors(self): return self.data['vectors'] @vectors.setter def vectors(self, value): self.data['vectors'] = value @property def points(self): return self.vectors.reshape(self.data.size, 9) @points.setter def points(self, value): self.points[:] = value @property def v0(self): return self.vectors[:, 0] @v0.setter def v0(self, value): self.vectors[:, 0] = value @property def v1(self): return self.vectors[:, 1] @v1.setter def v1(self, value): self.vectors[:, 1] = value @property def v2(self): return self.vectors[:, 2] @v2.setter def v2(self, value): self.vectors[:, 2] = value @property def x(self): return self.points[:, Dimension.X::3] @x.setter def x(self, value): self.points[:, Dimension.X::3] = value @property def y(self): return self.points[:, Dimension.Y::3] @y.setter def y(self, value): self.points[:, Dimension.Y::3] = value @property def z(self): return self.points[:, Dimension.Z::3] @z.setter def z(self, value): self.points[:, Dimension.Z::3] = value
[docs] @classmethod def remove_duplicate_polygons(cls, data, value=RemoveDuplicates.SINGLE): value = RemoveDuplicates.map(value) polygons = data['vectors'].sum(axis=1) # Get a sorted list of indices idx = numpy.lexsort(polygons.T) # Get the indices of all different indices diff = numpy.any(polygons[idx[1:]] != polygons[idx[:-1]], axis=1) if value is RemoveDuplicates.SINGLE: # Only return the unique data, the True is so we always get at # least the originals return data[numpy.sort(idx[numpy.concatenate(([True], diff))])] elif value is RemoveDuplicates.ALL: # We need to return both items of the shifted diff diff_a = numpy.concatenate(([True], diff)) diff_b = numpy.concatenate((diff, [True])) diff = numpy.concatenate((diff, [False])) # Combine both unique lists filtered_data = data[numpy.sort(idx[diff_a & diff_b])] if len(filtered_data) <= len(data) / 2: return data[numpy.sort(idx[diff_a])] else: return data[numpy.sort(idx[diff])] else: return data
[docs] @classmethod def remove_empty_areas(cls, data): vectors = data['vectors'] v0 = vectors[:, 0] v1 = vectors[:, 1] v2 = vectors[:, 2] normals = numpy.cross(v1 - v0, v2 - v0) squared_areas = (normals ** 2).sum(axis=1) return data[squared_areas > AREA_SIZE_THRESHOLD ** 2]
[docs] def update_normals(self, update_areas=True): '''Update the normals and areas for all points''' normals = numpy.cross(self.v1 - self.v0, self.v2 - self.v0) if update_areas: self.update_areas(normals) self.normals[:] = normals
[docs] def get_unit_normals(self): normals = self.normals.copy() normal = numpy.linalg.norm(normals, axis=1) non_zero = normal > 0 if non_zero.any(): normals[non_zero] /= normal[non_zero][:, None] return normals
[docs] def update_min(self): self._min = self.vectors.min(axis=(0, 1))
[docs] def update_max(self): self._max = self.vectors.max(axis=(0, 1))
[docs] def update_areas(self, normals=None): if normals is None: normals = numpy.cross(self.v1 - self.v0, self.v2 - self.v0) areas = .5 * numpy.sqrt((normals ** 2).sum(axis=1)) self.areas = areas.reshape((areas.size, 1))
[docs] def check(self): '''Check the mesh is valid or not''' return self.is_closed()
[docs] def is_closed(self): # pragma: no cover """Check the mesh is closed or not""" if numpy.isclose(self.normals.sum(axis=0), 0, atol=1e-4).all(): return True else: self.warning(''' Your mesh is not closed, the mass methods will not function correctly on this mesh. For more info: https://github.com/WoLpH/numpy-stl/issues/69 '''.strip()) return False
[docs] def get_mass_properties(self): ''' Evaluate and return a tuple with the following elements: - the volume - the position of the center of gravity (COG) - the inertia matrix expressed at the COG Documentation can be found here: http://www.geometrictools.com/Documentation/PolyhedralMassProperties.pdf ''' self.check() def subexpression(x): w0, w1, w2 = x[:, 0], x[:, 1], x[:, 2] temp0 = w0 + w1 f1 = temp0 + w2 temp1 = w0 * w0 temp2 = temp1 + w1 * temp0 f2 = temp2 + w2 * f1 f3 = w0 * temp1 + w1 * temp2 + w2 * f2 g0 = f2 + w0 * (f1 + w0) g1 = f2 + w1 * (f1 + w1) g2 = f2 + w2 * (f1 + w2) return f1, f2, f3, g0, g1, g2 x0, x1, x2 = self.x[:, 0], self.x[:, 1], self.x[:, 2] y0, y1, y2 = self.y[:, 0], self.y[:, 1], self.y[:, 2] z0, z1, z2 = self.z[:, 0], self.z[:, 1], self.z[:, 2] a1, b1, c1 = x1 - x0, y1 - y0, z1 - z0 a2, b2, c2 = x2 - x0, y2 - y0, z2 - z0 d0, d1, d2 = b1 * c2 - b2 * c1, a2 * c1 - a1 * c2, a1 * b2 - a2 * b1 f1x, f2x, f3x, g0x, g1x, g2x = subexpression(self.x) f1y, f2y, f3y, g0y, g1y, g2y = subexpression(self.y) f1z, f2z, f3z, g0z, g1z, g2z = subexpression(self.z) intg = numpy.zeros((10)) intg[0] = sum(d0 * f1x) intg[1:4] = sum(d0 * f2x), sum(d1 * f2y), sum(d2 * f2z) intg[4:7] = sum(d0 * f3x), sum(d1 * f3y), sum(d2 * f3z) intg[7] = sum(d0 * (y0 * g0x + y1 * g1x + y2 * g2x)) intg[8] = sum(d1 * (z0 * g0y + z1 * g1y + z2 * g2y)) intg[9] = sum(d2 * (x0 * g0z + x1 * g1z + x2 * g2z)) intg /= numpy.array([6, 24, 24, 24, 60, 60, 60, 120, 120, 120]) volume = intg[0] cog = intg[1:4] / volume cogsq = cog ** 2 inertia = numpy.zeros((3, 3)) inertia[0, 0] = intg[5] + intg[6] - volume * (cogsq[1] + cogsq[2]) inertia[1, 1] = intg[4] + intg[6] - volume * (cogsq[2] + cogsq[0]) inertia[2, 2] = intg[4] + intg[5] - volume * (cogsq[0] + cogsq[1]) inertia[0, 1] = inertia[1, 0] = -(intg[7] - volume * cog[0] * cog[1]) inertia[1, 2] = inertia[2, 1] = -(intg[8] - volume * cog[1] * cog[2]) inertia[0, 2] = inertia[2, 0] = -(intg[9] - volume * cog[2] * cog[0]) return volume, cog, inertia
[docs] def update_units(self): units = self.normals.copy() non_zero_areas = self.areas > 0 areas = self.areas if non_zero_areas.shape[0] != areas.shape[0]: # pragma: no cover self.warning('Zero sized areas found, ' 'units calculation will be partially incorrect') if non_zero_areas.any(): non_zero_areas.shape = non_zero_areas.shape[0] areas = numpy.hstack((2 * areas[non_zero_areas],) * DIMENSIONS) units[non_zero_areas] /= areas self.units = units
[docs] @classmethod def rotation_matrix(cls, axis, theta): ''' Generate a rotation matrix to Rotate the matrix over the given axis by the given theta (angle) Uses the `Euler-Rodrigues <https://en.wikipedia.org/wiki/Euler%E2%80%93Rodrigues_formula>`_ formula for fast rotations. :param numpy.array axis: Axis to rotate over (x, y, z) :param float theta: Rotation angle in radians, use `math.radians` to convert degrees to radians if needed. ''' axis = numpy.asarray(axis) # No need to rotate if there is no actual rotation if not axis.any(): return numpy.identity(3) theta = 0.5 * numpy.asarray(theta) axis = axis / numpy.linalg.norm(axis) a = math.cos(theta) b, c, d = - axis * math.sin(theta) angles = a, b, c, d powers = [x * y for x in angles for y in angles] aa, ab, ac, ad = powers[0:4] ba, bb, bc, bd = powers[4:8] ca, cb, cc, cd = powers[8:12] da, db, dc, dd = powers[12:16] return numpy.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)], [2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)], [2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]])
[docs] def rotate(self, axis, theta=0, point=None): ''' Rotate the matrix over the given axis by the given theta (angle) Uses the :py:func:`rotation_matrix` in the background. .. note:: Note that the `point` was accidentaly inverted with the old version of the code. To get the old and incorrect behaviour simply pass `-point` instead of `point` or `-numpy.array(point)` if you're passing along an array. :param numpy.array axis: Axis to rotate over (x, y, z) :param float theta: Rotation angle in radians, use `math.radians` to convert degrees to radians if needed. :param numpy.array point: Rotation point so manual translation is not required ''' # No need to rotate if there is no actual rotation if not theta: return self.rotate_using_matrix(self.rotation_matrix(axis, theta), point)
[docs] def rotate_using_matrix(self, rotation_matrix, point=None): ''' Rotate using a given rotation matrix and optional rotation point Note that this rotation produces clockwise rotations for positive angles which is arguably incorrect but will remain for legacy reasons. For more details, read here: https://github.com/WoLpH/numpy-stl/issues/166 ''' identity = numpy.identity(rotation_matrix.shape[0]) # No need to rotate if there is no actual rotation if not rotation_matrix.any() or (identity == rotation_matrix).all(): return if isinstance(point, (numpy.ndarray, list, tuple)) and len(point) == 3: point = numpy.asarray(point) elif point is None: point = numpy.array([0, 0, 0]) elif isinstance(point, (int, float)): point = numpy.asarray([point] * 3) else: raise TypeError('Incorrect type for point', point) def _rotate(matrix): if point.any(): # Translate while rotating return (matrix - point).dot(rotation_matrix) + point else: # Simply apply the rotation return matrix.dot(rotation_matrix) # Rotate the normals self.normals[:] = _rotate(self.normals[:]) # Rotate the vectors for i in range(3): self.vectors[:, i] = _rotate(self.vectors[:, i])
[docs] def translate(self, translation): ''' Translate the mesh in the three directions :param numpy.array translation: Translation vector (x, y, z) ''' assert len(translation) == 3, "Translation vector must be of length 3" self.x += translation[0] self.y += translation[1] self.z += translation[2]
[docs] def transform(self, matrix): ''' Transform the mesh with a rotation and a translation stored in a single 4x4 matrix :param numpy.array matrix: Transform matrix with shape (4, 4), where matrix[0:3, 0:3] represents the rotation part of the transformation matrix[0:3, 3] represents the translation part of the transformation ''' is_a_4x4_matrix = matrix.shape == (4, 4) assert is_a_4x4_matrix, "Transformation matrix must be of shape (4, 4)" rotation = matrix[0:3, 0:3] unit_det_rotation = numpy.allclose(numpy.linalg.det(rotation), 1.0) assert unit_det_rotation, "Rotation matrix has not a unit determinant" for i in range(3): self.vectors[:, i] = numpy.dot(rotation, self.vectors[:, i].T).T self.x += matrix[0, 3] self.y += matrix[1, 3] self.z += matrix[2, 3]
def _get_or_update(key): def _get(self): if not hasattr(self, '_%s' % key): getattr(self, 'update_%s' % key)() return getattr(self, '_%s' % key) return _get def _set(key): def _set(self, value): setattr(self, '_%s' % key, value) return _set min_ = property(_get_or_update('min'), _set('min'), doc='Mesh minimum value') max_ = property(_get_or_update('max'), _set('max'), doc='Mesh maximum value') areas = property(_get_or_update('areas'), _set('areas'), doc='Mesh areas') units = property(_get_or_update('units'), _set('units'), doc='Mesh unit vectors') def __getitem__(self, k): return self.points[k] def __setitem__(self, k, v): self.points[k] = v def __len__(self): return self.points.shape[0] def __iter__(self): for point in self.points: yield point
[docs] def get_mass_properties_with_density(self, density): # add density for mesh,density unit kg/m3 when mesh is unit is m self.check() def subexpression(x): w0, w1, w2 = x[:, 0], x[:, 1], x[:, 2] temp0 = w0 + w1 f1 = temp0 + w2 temp1 = w0 * w0 temp2 = temp1 + w1 * temp0 f2 = temp2 + w2 * f1 f3 = w0 * temp1 + w1 * temp2 + w2 * f2 g0 = f2 + w0 * (f1 + w0) g1 = f2 + w1 * (f1 + w1) g2 = f2 + w2 * (f1 + w2) return f1, f2, f3, g0, g1, g2 x0, x1, x2 = self.x[:, 0], self.x[:, 1], self.x[:, 2] y0, y1, y2 = self.y[:, 0], self.y[:, 1], self.y[:, 2] z0, z1, z2 = self.z[:, 0], self.z[:, 1], self.z[:, 2] a1, b1, c1 = x1 - x0, y1 - y0, z1 - z0 a2, b2, c2 = x2 - x0, y2 - y0, z2 - z0 d0, d1, d2 = b1 * c2 - b2 * c1, a2 * c1 - a1 * c2, a1 * b2 - a2 * b1 f1x, f2x, f3x, g0x, g1x, g2x = subexpression(self.x) f1y, f2y, f3y, g0y, g1y, g2y = subexpression(self.y) f1z, f2z, f3z, g0z, g1z, g2z = subexpression(self.z) intg = numpy.zeros((10)) intg[0] = sum(d0 * f1x) intg[1:4] = sum(d0 * f2x), sum(d1 * f2y), sum(d2 * f2z) intg[4:7] = sum(d0 * f3x), sum(d1 * f3y), sum(d2 * f3z) intg[7] = sum(d0 * (y0 * g0x + y1 * g1x + y2 * g2x)) intg[8] = sum(d1 * (z0 * g0y + z1 * g1y + z2 * g2y)) intg[9] = sum(d2 * (x0 * g0z + x1 * g1z + x2 * g2z)) intg /= numpy.array([6, 24, 24, 24, 60, 60, 60, 120, 120, 120]) volume = intg[0] cog = intg[1:4] / volume cogsq = cog ** 2 vmass = volume * density inertia = numpy.zeros((3, 3)) inertia[0, 0] = (intg[5] + intg[6]) * density - vmass * ( cogsq[1] + cogsq[2]) inertia[1, 1] = (intg[4] + intg[6]) * density - vmass * ( cogsq[2] + cogsq[0]) inertia[2, 2] = (intg[4] + intg[5]) * density - vmass * ( cogsq[0] + cogsq[1]) inertia[0, 1] = inertia[1, 0] = -( intg[7] * density - vmass * cog[0] * cog[1]) inertia[1, 2] = inertia[2, 1] = -( intg[8] * density - vmass * cog[1] * cog[2]) inertia[0, 2] = inertia[2, 0] = -( intg[9] * density - vmass * cog[2] * cog[0]) return volume, vmass, cog, inertia